简易虚拟机制作

一、来源

代码和思路都是来源一个网站

https://www.jmeiners.com/lc3-vm/

我这里只是记录一下自己的思路,之前写 NEMU 工程量太大,以及后面的 Debug 和 API 都不熟练就放弃了。

这个项目好就好在简单,才三百多行代码。

二、理解

虚拟机本质上就是模拟程序指令去执行。

众所周知,程序是个文件,里面有指令和数据,我们先不看数据,只看指令(lc3-vm这个项目就是这样的)。

我们的任务就是把指令模拟出来,比如两个寄存器相加,指令跳转......

所以这里还需要模拟寄存器和内存这两个东西。(就是两个数组)

光是执行不管用啊,肯定要给点调用,像 call 之类的。在写 OS 的时候就需要捕捉中断,然后系统调用,然后就是驱动什么的事情。

但是但是,记住最重要的一点,虚拟机是模拟指令,不需要考虑那么多细节,我只需要在遇到需要打印的指令时直接 printf 就行。

总体来说就是这样,剩下的内容就是看指令集的文档,结合文档内容把每一条指令换成 C 语言的样子。 到此为止 Over!!!! 太棒了,一下午就干出来了!

三、代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#include <stdio.h>
#include <stdint.h>
#include <signal.h>
/* windows only */
#include <Windows.h>
#include <conio.h> // _kbhit

enum REG {
R_R0 = 0,
R_R1,
R_R2,
R_R3,
R_R4,
R_R5,
R_R6,
R_R7,
R_PC,
R_COND,
R_COUNT
};

enum FLAG {
FL_POS = 1 << 0, /* P */
FL_ZRO = 1 << 1, /* Z */
FL_NEG = 1 << 2, /* N */
};

enum OP {
OP_BR = 0, /* branch */
OP_ADD, /* add */
OP_LD, /* load */
OP_ST, /* store */
OP_JSR, /* jump register */
OP_AND, /* bitwise and */
OP_LDR, /* load register */
OP_STR, /* store register */
OP_RTI, /* return from interrupt (unused) */
OP_NOT, /* bitwise not */
OP_LDI, /* load indirect */
OP_STI, /* store indirect */
OP_JMP, /* jump */
OP_RES, /* reserved (unused) */
OP_LEA, /* load effective address */
OP_TRAP /* execute trap */
};

enum TRAP{
TRAP_GETC = 0x20, /* get character from keyboard, not echoed onto the terminal */
TRAP_OUT = 0x21, /* output a character */
TRAP_PUTS = 0x22, /* output a word string */
TRAP_IN = 0x23, /* get character from keyboard, echoed onto the terminal */
TRAP_PUTSP = 0x24, /* output a byte string */
TRAP_HALT = 0x25 /* halt the program */
};

enum MAP_REG{
MR_KBSR = 0xFE00, /* keyboard status */
MR_KBDR = 0xFE02 /* keyboard data */
};

#define MEMORY_MAX (1 << 16)
uint16_t memory[MEMORY_MAX]; /* 128 KB*/
uint16_t reg[R_COUNT];

HANDLE hStdin = INVALID_HANDLE_VALUE;
DWORD fdwMode, fdwOldMode;

void disable_input_buffering() {
hStdin = GetStdHandle(STD_INPUT_HANDLE);
GetConsoleMode(hStdin, &fdwOldMode); /* save old mode */
fdwMode = fdwOldMode
^ ENABLE_ECHO_INPUT /* no input echo */
^ ENABLE_LINE_INPUT; /* return when one or
more characters are available */
SetConsoleMode(hStdin, fdwMode); /* set new mode */
FlushConsoleInputBuffer(hStdin); /* clear buffer */
}

void restore_input_buffering() {
SetConsoleMode(hStdin, fdwOldMode);
}

uint16_t check_key() {
return WaitForSingleObject(hStdin, 1000) == WAIT_OBJECT_0 && _kbhit();
}

void handle_interrupt(int signal) {
restore_input_buffering();
printf("\n");
exit(-2);
}

uint16_t sign_extend(uint16_t x, int bit_count) {
if ((x >> (bit_count - 1)) & 1) {
x |= (0xFFFF << bit_count);
}
return x;
}

uint16_t swap16(uint16_t x) {
return (x << 8) | (x >> 8);
}

void update_flags(uint16_t r) {
if (reg[r] == 0) {
reg[R_COND] = FL_ZRO;
} else if (reg[r] >> 15) { /* a 1 in the left-most bit indicates negative */
reg[R_COND] = FL_NEG;
} else {
reg[R_COND] = FL_POS;
}
}

void read_image_file(FILE *file) {
/* the origin tells us where in memory to place the image */
uint16_t origin;
fread(&origin, sizeof(origin), 1, file);
origin = swap16(origin);

/* we know the maximum file size so we only need one fread */
uint16_t max_read = MEMORY_MAX - origin;
uint16_t* p = memory + origin;
size_t read = fread(p, sizeof(uint16_t), max_read, file);

/* swap to little endian */
while (read-- > 0)
{
*p = swap16(*p);
++p;
}
}

int read_image(const char *image_path) {
FILE *file = fopen(image_path, "rb");
if (!file) {
return 0;
}
read_image_file(file);
fclose(file);
return 1;
}

void mem_write(uint16_t address, uint16_t val) {
memory[address] = val;
}

uint16_t mem_read(uint16_t address) {
if (address == MR_KBSR) {
if (check_key()) {
memory[MR_KBSR] = (1 << 15);
memory[MR_KBDR] = getchar();
} else {
memory[MR_KBSR] = 0;
}
}
return memory[address];
}

int main(int argc, char const *argv[]) {
if (argc < 2) {
/* show usage string */
printf("lc3 [image-file1] ???\n");
exit(2);
}

for (int i = 1; i < argc; i++) {
if (!read_image(argv[i])) {
printf("failed to load image: %s \n", argv[i]);
exit(1);
}
}

signal(SIGINT, handle_interrupt);
disable_input_buffering();

/* since exactly one condition flag should be set at any given time, set the Z flag */
reg[R_COND] = FL_ZRO;

/* set the PC to starting position */
/* 0x3000 is the default */
enum {PC_START = 0x3000} ;
reg[R_PC] = PC_START;

int running = 1;

while (running){
/* FETCH */
uint16_t instr = mem_read(reg[R_PC]++);
uint16_t op = instr >> 12; /* high four bits is op*/

switch (op)
{
case OP_ADD:
{
/* destination register (DR) */
uint16_t r0 = (instr >> 9) & 0x7;
/* first operand (SR1) */
uint16_t r1 = (instr >> 6) & 0x7;
/* whether we are in immediate mode */
uint16_t imm_flag = (instr >> 5) & 0x1;

if (imm_flag) {
uint16_t imm5 = sign_extend(instr & 0x1F, 5);
reg[r0] = reg[r1] + imm5;
} else {
uint16_t r2 = instr & 0x7;
reg[r0] = reg[r1] + reg[r2];
}
update_flags(r0);
}
break;
case OP_AND:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t imm_flag = (instr >> 5) & 0x1;

if (imm_flag) {
uint16_t imm5 = sign_extend(instr & 0x1F, 5);
reg[r0] = reg[r1] & imm5;
} else {
uint16_t r2 = instr & 0x7;
reg[r0] = reg[r1] & reg[r2];
}
update_flags(r0);
}
break;
case OP_NOT:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;

reg[r0] = ~reg[r1];
update_flags(r0);
}
break;
case OP_BR:
{
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
uint16_t cond_flag = (instr >> 9) & 0x7;
if (cond_flag & reg[R_COND]) {
reg[R_PC] += pc_offset;
}
}
break;
case OP_JMP:
{
/* Also handles RET */
uint16_t r1 = (instr >> 6) & 0x7;
reg[R_PC] = reg[r1];
}
break;
case OP_JSR:
{
uint16_t long_flag = (instr >> 11) & 1;
reg[R_R7] = reg[R_PC];
if (long_flag) {
uint16_t long_pc_offset = sign_extend(instr & 0x7FF, 11);
reg[R_PC] += long_pc_offset; /* JSR */
} else {
uint16_t r1 = (instr >> 6) & 0x7;
reg[R_PC] = reg[r1]; /* JSRR */
}
}
break;
case OP_LD:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
reg[r0] = mem_read(reg[R_PC] + pc_offset);
update_flags(r0);
}
break;
case OP_LDI:
{
/* destination register (DR) */
uint16_t r0 = (instr >> 9) & 0x7;
/* PCoffset 9*/
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
/* add pc_offset to the current PC, look at that memory location to get the final address */
reg[r0] = mem_read(mem_read(reg[R_PC] + pc_offset));
update_flags(r0);
}
break;
case OP_LDR:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t offset = sign_extend(instr & 0x3F, 6);
reg[r0] = mem_read(reg[r1] + offset);
update_flags(r0);
}
break;
case OP_LEA:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
reg[r0] = reg[R_PC] + pc_offset;
update_flags(r0);
}
break;
case OP_ST:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
mem_write(reg[R_PC] + pc_offset, reg[r0]);
}
break;
case OP_STI:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
mem_write(mem_read(reg[R_PC] + pc_offset), reg[r0]);
}
break;
case OP_STR:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t offset = sign_extend(instr & 0x3F, 6);
mem_write(reg[r1] + offset, reg[r0]);
}
break;
case OP_TRAP:
reg[R_R7] = reg[R_PC];
switch (instr & 0xFF)
{
case TRAP_GETC:
/* read a single ASCII char */
reg[R_R0] = (uint16_t)getchar();
update_flags(R_R0);
break;
case TRAP_OUT:
putc((char)reg[R_R0], stdout);
fflush(stdout);
break;
case TRAP_PUTS:
{
/* one char per word */
uint16_t* c = memory + reg[R_R0];
while (*c)
{
putc((char)*c, stdout);
++c;
}
fflush(stdout);
}
break;
case TRAP_IN:
{
printf("Enter a character: ");
char c = getchar();
putc(c, stdout);
fflush(stdout);
reg[R_R0] = (uint16_t)c;
update_flags(R_R0);
}
break;
case TRAP_PUTSP:
{
/* one char per byte (two bytes per word)
here we need to swap back to
big endian format */
uint16_t* c = memory + reg[R_R0];
while (*c)
{
char char1 = (*c) & 0xFF;
putc(char1, stdout);
char char2 = (*c) >> 8;
if (char2) putc(char2, stdout);
++c;
}
fflush(stdout);
}
break;
case TRAP_HALT:
puts("HALT");
fflush(stdout);
running = 0;
break;
}
break;
case OP_RES:
case OP_RTI:
default:
abort();
break;
}
}
restore_input_buffering();
}